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The Basics

Definition of “fast”

A numerical linear algebraic method is fast if its execution time
scales asymptotically less than the cost of classic linear algebra
techniques.

What is a “direct solver”?

Given a pre-set tolerance € and a linear system Ax = b, a direct
solver constructs an operator T so that |[A™! —T|| <e.

For a direct solver to be fast, the cost of constructing T and
applying T to a vector needs to be low.
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G Marple, A. Barnett, A. Gillman, and A. Veerapaneni, A Fast Algorithm for
Simulating Multiphase Flows Through Periodic Geometries of Arbitrary Shape.
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Model problem
Consider the Laplace BVP

Vg

—Au(z) = 0 for x € Q,
u(z) = f(z) forzel =00. r
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where o(x) is an unknown boundary charge density and

G(z,y) = —ilog (ﬁ) is the Green's function.



Boundary Integral Equation

Model problem

Vy
Consider the Laplace BVP
—Au(z) = 0 for x € Q,
u(z) = f(z) forzel =00. r
The solution to the BVP can be represented as a double-layer
potential

u(zx) = /F Wa(y)dl(y), x €

where o(x) is an unknown boundary charge density and
G(z,y) = —ilog (ﬁ) is the Green's function.

Enforcing the boundary condition yields the boundary integral
equation (BIE)
1 0G(z,y)

—50(33) + . Tyya(y)dl(y) = f(z), forz eT.
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The discretized linear system

Let & = (0(x1),...,0(z )T, F = (f(z1),..., f(zn)T, I be the
identity matrix, and D be a matrix with entries D;; = %wﬁ
;)

then the discretized BIE can be written as

AG = (—%I+D)E =f
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The discretized linear system

Let &@ = (o(x1),...,0(x )T, F = (f(z1), ..., f(xn)T, I be the

identity matrix, and D be a matrix with entries D;; = % iy
.

then the discretized BIE can be written as

AG = (—%I+D)E =f

A is called the coefficient matrix.

Properties of the coefficient matrix A:
» A is a dense matrix.

» The size of A depends on the number of discretization points
N on the boundary I'.
» A is data-sparse.
» Particularly, the off-diagonal blocks of A are low-rank.
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Data-sparse property of the coefficient matrix

Definition: A matrix S € R"*™ is e-rank if it has exactly k = k(e)
singular values that are greater than €. S is called a low-rank
matrix if £k << m.
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Let's verify that the off-diagonal blocks of the coefficient matrix A
are indeed low-rank by an example:
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Data-sparse property of the coefficient matrix

Definition: A matrix S € R"*™ is e-rank if it has exactly k = k(e)
singular values that are greater than €. S is called a low-rank
matrix if £k << m.

Let's verify that the off-diagonal blocks of the coefficient matrix A
are indeed low-rank by an example:

S~

Boundary: ' =T, UT¥
Matrix block: A(I',,I'¢) € R00%900
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Data-sparse property of the coefficient matrix

Definition: A matrix S € R"*™ is e-rank if it has exactly k = k(e)
singular values that are greater than €. S is called a low-rank
matrix if £k << m.

Let's verify that the off-diagonal blocks of the coefficient matrix A
are indeed low-rank by an example:

10°

10

e=10"1% k=10

re r
T T )
s e=10""% k=19

S~ s

. J— -20
Boundary: ' =T, UT'7 107 20 40 60 80 100

Matrix block: A(T',,T¢) € R00x900 The singular values of A(T'-,T'%)
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Block-separable matrix

A matrix A of dimension (np) x (np) is block-separable if it
consists p X p blocks each of size n x n: e.g. for p = 4,

Dy A Az Ay
As1 Doy Az Ay
A3 Az D33 Az
Ay Agp Ay Dy

And each of the off-diagonal block admits the factorization

A; = U Ay V;
nxXn nxk kxk kxn

where the rank k is significantly smaller than the block size n.

A. Gillman, P. Young, and P.G. Martinsson, A direct solver with O(N) complexity for
integral equations on one-dimensional domains
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Dii  UiAwVi UiApVs
U2 {421 VT p22 U2 A23 V§
US 431 VT U3 432 V; p33
U4 A41 VT U4 A42 V; U4 A43 Vj}

Then we have A =

and it can be factored as

UiAuV;

U2 424 VZ

US A34 VZ
D44

A= _ _ _
U, ~0 Ao {113 {114 Vi
U, A 0 Ay {124
Us {131 {132 0 A3y
Ui Ay A Az O
U _a
Dy
Dy,
D33 ’

—y*



The HBS Representation and Inversion

Block separable matrix and its inversion

A admits the factorization:

A _ ~ v
pnXxXpn pn><pk pkxpk pk:><pn pnxpn

e Ay

Lemma (Variation of Woodbury) If A admits the factorization
above, the inverse can be evaluated as

A1 = (A+ D)~ F*
pnXpn pnxpk pkxpk pkxpn pnxpn

where (provided all intermediate matrices are invertible)

D=(v*D'U)"', E=D'UD,F=(DV*D~1)*, and
G=D"'-D 'UDV*D ..
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Hierarchically block separable(HBS) matrix

The lemma reduces the cost of inversion from (pn)3 to (pk)3 !

10
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Hierarchically block separable(HBS) matrix

The lemma reduces the cost of inversion from (pn)? to (pk)3 !

But this is not “fast” yet.

We obtain a fast scheme by performing the above factorization
“hierarchically”.

10



The HBS Representation and Inversion

Hierarchically block separable(HBS) matrix

The lemma reduces the cost of inversion from (pn)3 to (pk)3
But this is not “fast” yet.

We obtain a fast scheme by performing the above factorization
“hierarchically”.
For example, a “3-level” telescoping factorization of A will be

A=U® (U(2) (U(1>B(0) (V(l))*) +B(1))(V(2))* +B(2))(V(3))* +Dp®
And the block structure will look like:

u® yp@uuvpo© v@Oy*BL (v @)= B®) (V3= D®)

H@”mﬂ@f JMM

10




The Basics

Boundary Integral Equation The HBS Representation and Inversion

Numerical examples

Consider the BIE

——0

2

@+ [

G (z,y)

vy

o(y)dl(y) = f(z), for z € T

Locally Perturbed Geometry

11
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Numerical examples
Consider the BIE r

—10(:U)+/ aG(:E’y)a(y)dl(y) = f(z), forz € T
r

vy

—»—factorization
- inversion

10" F mat-vec multiply
= -linear scaling

11



The Basics Boundary Integral Equation The HBS Representation and Inversion

Problem with locally perturbed geometry

Consider a BIE defined on T',,.
We can solve this by building a direct solver.

Locally Perturbed Geometry

12



The Basics Boundary Integral Equation The HBS Representation and Inversion Locally Perturbed Geometry

Problem with locally perturbed geometry
Now, suppose we already have a direct solver for I'y, = I, U T'..

We want to solve the BIE defined on I" := 1", U T,

L'y

12
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Problem with locally perturbed geometry

We have a direct solver for I'y = ', UT,.
We want to solve a BIE defined on I' = 1", U T,

Locally Perturbed Geometry

Iy

13
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Iy

Problem with locally perturbed geometry

We have a direct solver for I';y = 1", UT.

We want to solve a BIE defined on I' = 1", U T, h
k

The discretized integral equation on I' can be expressed as

_Akc Ok fk:
|:A6)O AO :| + " (_BCC> Aop Oc | = 0
%,i/ Apk 0 0 Op fp
A
M

where B, equals to A.. with diagonal entries set to zero, Ao,
denotes the interaction matrix on I',, A, denotes the interaction
between I';, and I'., and the rest follows the same notation.

L. Greengard, D. Gueyffier, P.G. Martinsson, V. Rokhlin, Fast direct solvers for
integral equations in complex three-dimensional domains

13
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A closer look at the update matrix M

M has three low-rank sub-blocks:
Apk ~ kaRpka Akc ~ chcha
and A,, ~ LyyR,p.

Locally Perturbed Geometry

Iy

14
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A closer look at the update matrix M
L'y
M has three low-rank sub-blocks:

Apk ~ kaRpka Akc ~ chcha
and A,, ~ L,,R,. L'

Combining the three factorizations, we obtain a low-rank
factorization of the update matrix:

om0 R, Ro 0
M~ 0 —Be. op 0 <kc> 0

I
Ly 0 o], o’ =,
L
R

14
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Why building a low-rank factorization of M?

The inverse of (A + M) can be approximated as
(A+LR)™' = A!' + A'L (I+RA'L)! RA™!
N x N KxK

15
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Why building a low-rank factorization of M?

The inverse of (A + M) can be approximated as
(A+LR)™' = A!' + A'L (I+RA'L)! RA™!
N x N KxK

The solution to the extended system can be approximated as
A+M) 'f~A'f+ A 'LU+RA L) 'RA'f.

The existing direct solver for the BIE on I', can be reused to
calculate the repeated terms

Az 0T Al 0
ag=A o) maa= e 2L
0 A} f) 0 A}

p

15
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Numerical tests

Consider the Laplace BVP defined on the “square with thinning
nose geometry”:

I, {/—\
R — Q

» d decreases as N, increases so that N. = 16 remains a
constant.

Corners are smoothed by the method in C. Eptein and M. O'Neil, Smoothed corners
and scattered waves.

16



Locally Perturbed Geometry

g

The Basics Boundary Integral Equation The HBS Representation and Inversion
Laplace on a square with thinning nose Tp
—TI. Q
Pre-computation Solve
=#—new solver —#—new solver
10" F|-4-HBS --HBS
= ~linear scaling 1071 F|—= -linear scaling
6\100 3
g -
~— P 10-2
Q. 1 -7 -
AL -
E10 - - _- -
- -
- -7 107 -7
102} .7 -7
- - - -
- -
- -
. . Fd . .
10° 10* 10° 10° 10° 10°

(N, = 16, and N,, € [700,900].)



Laplace on a square with thinning nose

Locally Perturbed Geometry

No Tnew,p Thbs,p % ,I'new7 s Thbs7 s %
4624 0.24 0.92 0.26 1.5e-02 | 1.1e-02 1.4
9232 0.33 1.37 0.24 2.0e-02 | 1.6e-02 1.3
18448 0.55 2.20 0.25 3.5e-02 | 2.8e-02 1.2
36880 1.10 3.76 0.29 6.2e-02 | 4.6e-02 1.3
73744 1.98 6.88 0.29 0.13 9.0e-02 1.4
147472 4.00 13.2 0.30 0.24 0.17 1.4

» With e = 1 x 10719, the relative error is around 1 x 1072,

» New solver scales linearly w.r.t. N,.

» In terms of total cost, it would take 100 to 260 solves to make
the new solver slower than building a new HBS solver from
scratch.

18



Numerical tests

Locally Perturbed Geometry

Consider the Laplace BVP defined on the smooth star with the

boxed segment locally refined:

Original
discretization

Refined
discretization

19
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Star with locally refined discretization

Relative error on a logl0 scale:

Locally Perturbed Geometry

T

Original discretization Refined discretization

20
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Star with locally refined discretization

Tk
Pre-computation Solve
-¥—-new solver -j—=new solver
-A-HBS 11| [7A-HBS
10'¢ 1
—~
b 10°
&’100 I
(] -1
< 10
I_ -1
107 ¢ 1072
102 10° 10* 102 10° 10*
Np Np

(N, = 592, N, = 48 remain constant.)

21



Star with locally refined discretization

Locally Perturbed Geometry

Np Tnew,p Thbs,p % Tnew, s Thbs, s %
96 4.2e-02 | 0.20 0.21 4.3e-03 | 5.7e-03 | 0.75
192 4.9e-02 | 0.191 0.25 3.5e-03 | 3.5e-03 | 1.00
384 7.0e-02 | 0.20 0.34 4.5e-03 | 4.1e-03 | 1.11
768 0.13 0.24 0.55 8.3e-03 | 5.4e-03 | 1.54
1536 0.34 0.32 1.07 3.5e-02 | 9.8e-03 | 3.60

» The new solver can be incorporated into an adaptive

discretization technique for BIEs if the local refinement only
adds a reasonable number of new points.

» For N, large, the new solver is much more expensive than

HBS. Cost is dominated by A;pl.

22
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Application in modeling objects in Stokes flow

(click for video)

Example is from G. Marple, A. Barnett, A. Gillman, and S. Veerapaneni, A fast
algorithm for simulating multiphase flows through periodic geometries of arbitrary
shape.

23
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Stokes on locally refined periodic pipes

Consider the periodic Stokes problem defined on the following pipe
geometry. (The boundary wall consists infinite copies of the shown

piece.)
Ie
e
i Original discretization
— n M [—]|
— U U L—
T
Iy
7
i Refined discretization

24
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Stokes on locally refined periodic pipes

Pre-computation Solve
103} : ] 0 ;

~#—new solver 10" [ |~#—new solver

-A-HBS -4-HBS
—~
102
(2]
N
)
E 1
R .
F jott

10° 104 10° 10*
Np Np

(Ni, = 6290 and Nc¢ = 110 remain constant.)

25



Stokes on locally refined periodic pipes

Locally Perturbed Geometry

Np Tnew,p Thbs,p 2%11:5 Tnew, s Thbs, s %21::
330 4.5e+00 | 3.6e+01 0.12 5.4e-02 | 4.1e-02 1.3
660 4.4e+400 | 3.9e+01 0.12 5.0e-02 | 4.5e-02 1.1
1320 || 5.9e4-00 | 3.8e+4-01 0.16 4.9e-02 | 4.5e-02 1.1
2640 || 7.6e+00 | 4.1e+01 0.19 5.8e-02 | 5.0e-02 1.2
5280 || 2.0e+01 | 4.4e+01 | 0.45 7.7e-02 | 5.5e-02 1.4

» With tolerance for (matrix) low-rank approximation
e =1 x 10712, the relative error is about 3 x 1078.

26



Locally Perturbed Geometry

Conclusion
Summary

> A brief introduction to fast direct solvers for BIEs and
particularly the Hierarchically block-sparable (HBS) solver.
» Linear scaling 2D
» Great for problems with multipole right-hand-sides
» A new fast direct solver for problems defined on
locally-perturbed geometries
» Reuses the inverse approximation previously constructed for
the original geometry
» Outperforms HBS from scratch when the size of changes is

small.
> Very efficient in handling local refinement in discretization

27
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Conclusion
Summary
> A brief introduction to fast direct solvers for BIEs and
particularly the Hierarchically block-sparable (HBS) solver.
» Linear scaling 2D
» Great for problems with multipole right-hand-sides
» A new fast direct solver for problems defined on
locally-perturbed geometries
» Reuses the inverse approximation previously constructed for
the original geometry
» Outperforms HBS from scratch when the size of changes is

small.
> Very efficient in handling local refinement in discretization

Future directions
» Continue on building an adaptive discretization technique for
Stokes and a fast direct solver that works with it.

» 3D problems.

27
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