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Definition of “fast”

A numerical linear algebraic method is fast if its execution time
scales asymptotically less than the cost of classic linear algebra
techniques.

What is a “direct solver”?

Given a pre-set tolerance ε and a linear system AAAx = b, a direct
solver constructs an operator TTT so that ‖AAA−1 − TTT‖ ≤ ε.

For a direct solver to be fast, the cost of constructing TTT and
applying TTT to a vector needs to be low.
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Motivation

https://altairhyperworks.com/product/FEKO/Applications-Antenna-Placement

G Marple, A. Barnett, A. Gillman, and A. Veerapaneni, A Fast Algorithm for

Simulating Multiphase Flows Through Periodic Geometries of Arbitrary Shape.
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Model problem
Consider the Laplace BVP

−∆u(x) = 0 for x ∈ Ω,
u(x) = f(x) for x ∈ Γ = ∂Ω.

Ω

Γ

x

νx

The solution to the BVP can be represented as a double-layer
potential

u(x) =

∫
Γ

∂G(x, y)

∂νy
σ(y)dl(y), x ∈ Ω

where σ(x) is an unknown boundary charge density and

G(x, y) = − 1
2π log

(
1
|x−y|

)
is the Green’s function.

Enforcing the boundary condition yields the boundary integral
equation (BIE)

−1

2
σ(x) +

∫
Γ

∂G(x, y)

∂νy
σ(y)dl(y) = f(x), for x ∈ Γ.
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The discretized linear system

Let ~σ = (σ(x1), . . . , σ(xn))T , ~f = (f(x1), . . . , f(xn))T , III be the

identity matrix, and DDD be a matrix with entries DDDij =
∂G(xi,xj)
∂νxj

wj ,

then the discretized BIE can be written as

AAA~σ = (−1

2
III +DDD)~σ = ~f

AAA is called the coefficient matrix.

Properties of the coefficient matrix AAA:

I AAA is a dense matrix.

I The size of AAA depends on the number of discretization points
N on the boundary Γ.

I AAA is data-sparse.
I Particularly, the off-diagonal blocks of AAA are low-rank.
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Data-sparse property of the coefficient matrix

Definition: A matrix SSS ∈ Rm×n is ε-rank if it has exactly k = k(ε)
singular values that are greater than ε. SSS is called a low-rank
matrix if k << m.

Let’s verify that the off-diagonal blocks of the coefficient matrix AAA
are indeed low-rank by an example:

ΓτΓcτ

Boundary: Γ = Γτ ∪ Γcτ

Matrix block: AAA(Γτ ,Γ
c
τ ) ∈ R100×900
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The singular values of AAA(Γτ ,Γ
c
τ )

ε = 10−16, k = 19

ε = 10−10, k = 10
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Block-separable matrix

A matrix AAA of dimension (np)× (np) is block-separable if it
consists p× p blocks each of size n× n: e.g. for p = 4,

AAA =


DDD11 AAA12 AAA13 AAA14

AAA21 DDD22 AAA23 AAA24

AAA31 AAA32 DDD33 AAA34

AAA41 AAA42 AAA43 DDD44

 .
And each of the off-diagonal block admits the factorization

AAAij = UUU i ÃAAij VVV ∗j
n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n.

A. Gillman, P. Young, and P.G. Martinsson, A direct solver with O(N) complexity for
integral equations on one-dimensional domains
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Then we have AAA =


DDD11 UUU1 ÃAA12 VVV

∗
2 UUU1 ÃAA13 VVV

∗
3 UUU1 ÃAA14 VVV

∗
4

UUU2 ÃAA21 VVV
∗
1 DDD22 UUU2 ÃAA23 VVV

∗
3 UUU2 ÃAA24 VVV

∗
4

UUU3 ÃAA31 VVV
∗
1 UUU3 ÃAA32 VVV

∗
2 DDD33 UUU3 ÃAA34 VVV

∗
4

UUU4 ÃAA41 VVV
∗
1 UUU4 ÃAA42 VVV

∗
2 UUU4 ÃAA43 VVV

∗
3 DDD44

 ,
and it can be factored as

AAA =
UUU1

UUU2

UUU3

UUU4


︸ ︷︷ ︸

=UUU


000 ÃAA12 ÃAA13 ÃAA14

ÃAA21 000 ÃAA23 ÃAA24

ÃAA31 ÃAA32 000 ÃAA34

ÃAA41 ÃAA42 ÃAA43 000


︸ ︷︷ ︸

=ÃAA


VVV ∗

1

VVV ∗
2

VVV ∗
3

VVV ∗
4


︸ ︷︷ ︸

=VVV ∗

+


DDD11

DDD22

DDD33

DDD44


︸ ︷︷ ︸

=DDD

,
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Block separable matrix and its inversion
AAA admits the factorization:

AAA = UUU ÃAA VVV ∗ + DDD,
p n× p n pn× p k p k × p k p k × p n pn× p n

Lemma (Variation of Woodbury) If AAA admits the factorization
above, the inverse can be evaluated as

AAA−1 = EEE (ÃAA+ D̂DD)−1 FFF ∗ + GGG,
p n× p n pn× p k p k × p k p k × p n pn× p n

where (provided all intermediate matrices are invertible)
D̂DD =

(
VVV ∗DDD−1UUU

)−1
, EEE = DDD−1UUU D̂DD, FFF = (D̂DDVVV ∗DDD−1)∗, and

GGG = DDD−1 −DDD−1UUU D̂DDVVV ∗DDD−1.

9
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Hierarchically block separable(HBS) matrix

The lemma reduces the cost of inversion from (pn)3 to (pk)3 !

But this is not “fast” yet.

We obtain a fast scheme by performing the above factorization
“hierarchically”.
For example, a “3-level” telescoping factorization of AAA will be

AAA = UUU (3)(UUU (2)(UUU (1)BBB(0) (VVV (1))∗
)

+BBB(1))(VVV (2))∗ +BBB(2))(VVV (3))∗ +DDD(3).

And the block structure will look like:

UUU(3) UUU(2)UUU(1)BBB(0)(VVV (1))∗BBB(1) (VVV (2))∗ BBB(2) (VVV (3))∗ DDD(3)
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Numerical examples

Consider the BIE

−1

2
σ(x)+

∫
Γ

∂G(x, y)

∂νy
σ(y)dl(y) = f(x), for x ∈ Γ.

Ω
Γ

10
4

10
5

10
-2

10
-1

10
0

10
1

factorization

inversion

mat-vec multiply

linear scaling

T
im

e
(s

ec
)

N
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Problem with locally perturbed geometry

Consider a BIE defined on Γo.
We can solve this by building a direct solver.

Γo

Ωo

Γk

Γp

Γc

Ω
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Problem with locally perturbed geometry

Now, suppose we already have a direct solver for Γo = Γk ∪ Γc.
We want to solve the BIE defined on Γ := Γk ∪ Γp

Γo

Ωo

Γk

Γp

Γc

Ω
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Problem with locally perturbed geometry

We have a direct solver for Γo = Γk ∪ Γc.
We want to solve a BIE defined on Γ = Γk ∪ Γp. Ω

Γk

Γp

Γc

The discretized integral equation on Γ can be expressed as
[
AAAoo 0

0 AAApp

]
︸ ︷︷ ︸

AAA

+

 0

(
−AAAkc

−BBBcc

)
AAAop

AAApk 0 0


︸ ︷︷ ︸

MMM


σσσk

σσσc

σσσp

 =

fffk0
fffp



where BBBcc equals to AAAcc with diagonal entries set to zero, AAAoo
denotes the interaction matrix on Γo, AAAkc denotes the interaction
between Γk and Γc, and the rest follows the same notation.

L. Greengard, D. Gueyffier, P.G. Martinsson, V. Rokhlin, Fast direct solvers for
integral equations in complex three-dimensional domains
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A closer look at the update matrix MMM

MMM has three low-rank sub-blocks:

AAApk ≈ LLLpkRRRpk, AAAkc ≈ LLLkcRRRkc,

and AAAop ≈ LLLopRRRop.
Ω

Γk

Γp

Γc

Combining the three factorizations, we obtain a low-rank
factorization of the update matrix:

MMM ≈

 0

(
−LLLkc 0

0 −BBBcc

)
LLLop

LLLpk 0 0


︸ ︷︷ ︸

LLL


RRRpk 0 0

0

(
RRRkc
III

)
0

0 0 RRRop


︸ ︷︷ ︸

RRR

14
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Why building a low-rank factorization of MMM?

The inverse of (AAA+MMM) can be approximated as
(AAA+LLLRRR)−1 = AAA−1 + AAA−1LLL (III +RRRAAA−1LLL)−1 RRRAAA−1

N ×N K ×K

The solution to the extended system can be approximated as
(AAA+MMM)−1fff ≈ AAA−1fff +AAA−1LLL(III +RRRAAA−1LLL)−1RRRAAA−1fff .

The existing direct solver for the BIE on Γo can be reused to
calculate the repeated terms

AAA−1fff =

[
AAA−1
oo 0
0 AAA−1

pp

]fffk0
fffp

 and AAA−1LLL =

[
AAA−1
oo 0
0 AAA−1

pp

]
LLL.
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Numerical tests
Consider the Laplace BVP defined on the “square with thinning
nose geometry”:

Ω

Γk

Γc Γc

ΓpΓp

d { i &%
'$

I d decreases as No increases so that Nc = 16 remains a
constant.

Corners are smoothed by the method in C. Eptein and M. O’Neil, Smoothed corners
and scattered waves. 16
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Laplace on a square with thinning nose
Ω

Γk

Γc

Γp

10
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10
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-1

10
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new solver
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linear scaling
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10
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10
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10
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10
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new solver
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linear scaling

Pre-computation Solve

T
im

e
(s

ec
)

No No

(Nc = 16, and Np ∈ [700, 900].)
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Laplace on a square with thinning nose

No Tnew, p Thbs, p
Tnew, p
Thbs, p

Tnew, s Thbs, s
Tnew, s
Thbs, s

4624 0.24 0.92 0.26 1.5e-02 1.1e-02 1.4

9232 0.33 1.37 0.24 2.0e-02 1.6e-02 1.3

18448 0.55 2.20 0.25 3.5e-02 2.8e-02 1.2

36880 1.10 3.76 0.29 6.2e-02 4.6e-02 1.3

73744 1.98 6.88 0.29 0.13 9.0e-02 1.4

147472 4.00 13.2 0.30 0.24 0.17 1.4

I With ε = 1× 10−10, the relative error is around 1× 10−9.

I New solver scales linearly w.r.t. No.

I In terms of total cost, it would take 100 to 260 solves to make
the new solver slower than building a new HBS solver from
scratch.

18
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Numerical tests

Consider the Laplace BVP defined on the smooth star with the
boxed segment locally refined:

Γk

Original
discretization

Refined
discretization

Γc

Γp
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Star with locally refined discretization
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Γc

Original discretization Refined discretization
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Relative error on a log10 scale:
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Star with locally refined discretization
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(Nk = 592, Nc = 48 remain constant.)
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Star with locally refined discretization

Np Tnew, p Thbs, p
Tnew, p
Thbs, p

Tnew, s Thbs, s
Tnew, s
Thbs, s

96 4.2e-02 0.20 0.21 4.3e-03 5.7e-03 0.75

192 4.9e-02 0.191 0.25 3.5e-03 3.5e-03 1.00

384 7.0e-02 0.20 0.34 4.5e-03 4.1e-03 1.11

768 0.13 0.24 0.55 8.3e-03 5.4e-03 1.54

1536 0.34 0.32 1.07 3.5e-02 9.8e-03 3.60

I The new solver can be incorporated into an adaptive
discretization technique for BIEs if the local refinement only
adds a reasonable number of new points.

I For Np large, the new solver is much more expensive than
HBS. Cost is dominated by AAA−1

pp .
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Application in modeling objects in Stokes flow

(click for video)

Example is from G. Marple, A. Barnett, A. Gillman, and S. Veerapaneni, A fast
algorithm for simulating multiphase flows through periodic geometries of arbitrary
shape.
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Stokes on locally refined periodic pipes

Consider the periodic Stokes problem defined on the following pipe
geometry. (The boundary wall consists infinite copies of the shown
piece.)

Γk

Original discretization

Γc

Refined discretization

Γp
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Stokes on locally refined periodic pipes
Γk Γc
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(Nk = 6290 and Nc = 110 remain constant.)

25



The Basics Boundary Integral Equation The HBS Representation and Inversion Locally Perturbed Geometry

Stokes on locally refined periodic pipes

Np Tnew, p Thbs, p
Tnew, p
Thbs, p

Tnew, s Thbs, s
Tnew, s
Thbs, s

330 4.5e+00 3.6e+01 0.12 5.4e-02 4.1e-02 1.3

660 4.4e+00 3.9e+01 0.12 5.0e-02 4.5e-02 1.1

1320 5.9e+00 3.8e+01 0.16 4.9e-02 4.5e-02 1.1

2640 7.6e+00 4.1e+01 0.19 5.8e-02 5.0e-02 1.2

5280 2.0e+01 4.4e+01 0.45 7.7e-02 5.5e-02 1.4

I With tolerance for (matrix) low-rank approximation
ε = 1× 10−12, the relative error is about 3× 10−8.
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Conclusion
Summary

I A brief introduction to fast direct solvers for BIEs and
particularly the Hierarchically block-sparable (HBS) solver.

I Linear scaling 2D
I Great for problems with multipole right-hand-sides

I A new fast direct solver for problems defined on
locally-perturbed geometries

I Reuses the inverse approximation previously constructed for
the original geometry

I Outperforms HBS from scratch when the size of changes is
small.

I Very efficient in handling local refinement in discretization

Future directions

I Continue on building an adaptive discretization technique for
Stokes and a fast direct solver that works with it.

I 3D problems.
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